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D 5 3.1. The drag history, shown in (c), agrees well with
the results of [24] which were based upon an adaptiveEfficient solution of the Navier–Stokes equations in complex do-

mains is dependent upon the availability of fast solvers for sparse vortex method using up to 106 elements. The present calcu-
linear systems. For unsteady incompressible flows, the pressure lation used a total of K 5 6112 spectral elements, with the
operator is the leading contributor to stiffness, as the characteristic order varying from N 5 4 at early times to N 5 9 at
propagation speed is infinite. In the context of operator splitting

later times.formulations, it is the pressure solve which is the most computation-
At elevated resolutions, the linear system which imposesally challenging, despite its elliptic origins. We examine several

preconditioners for the consistent L 2 Poisson operator arising in the pressure/divergence-free constraint at each time step
the PN 2 PN22 spectral element formulation of the incompressible can become very ill conditioned and consequently tends
Navier–Stokes equations. We develop a finite element-based addi- to be the computational bottleneck when iterative solvers
tive Schwarz preconditioner using overlapping subdomains plus

are employed. This problem can be exacerbated by thea coarse grid projection operator which is applied directly to the
presence of high-aspect-ratio elements and/or widely vary-pressure on the interior Gauss points. For large two-dimensional

problems this approach can yield as much as a fivefold reduction ing scales of resolution which are frequently encountered
in simulation time over previously employed methods based upon in practice, but often not present in model problems. Con-
deflation. Q 1997 Academic Press sequently, all of our recent iterative development work

has focused upon a suite of cylinder problems of the type
shown in Fig. 1.1. INTRODUCTION

In this paper, we present a preconditioner for the pres-
sure problem which is derived from a low-order finite ele-We consider the problems encountered in large-scale
ment Laplacian with appropriate boundary conditions. Thespectral element simulations of unsteady incompressible
low-order operator defines a system to which additive over-flows. Accurate simulation of even two-dimensional flows
lapping Schwarz methods can be readily applied, as pro-can require hundreds of thousands of grid points when the
posed by Dryja and Widlund, e.g., [12]. The combinationReynolds number is on the order of 104. In the spectral
of spectral methods and finite element preconditioningelement method, this elevated resolution can be attained
was first proposed by Orszag [33] and has been studiedby either increasing K, the number of elements, or increas-
extensively by Deville, Mund, and co-workers, e.g., [9, 10].ing N, the order of approximation within each element. In
The combination of spectral methods, finite element pre-practice, it is common to keep the order at a moderate
conditioning, and additive Schwarz methods has been in-level, i.e., in the range N 5 4 to 15, and increase the
vestigated by Pahl [34], Pavarino and Widlund [37], andnumber of elements to capture increasing physical and
Casarin [5] for the case of the discrete Laplacian. Rønquistgeometrical complexity.
[40] and Casarin [6] have studied iterative substructuringWe have followed this approach in a number of recent
methods for spectral element solution of the fully coupledhigh-Reynolds-number simulations of start-up flow past a
steady Navier–Stokes equations. Rønquist also proposedcylinder using a time-splitting procedure which decouples
a block-Jacobi/deflation-based scheme applied to the con-the CFL-limited convection steps, the linear viscous step,
sistent Poisson operator governing the pressure for theand the divergence-free projection into independent sub-
unsteady case [17, 39]. To our knowledge, this is the firstproblems to be solved at each time step. Figure 1a shows
application of additive Schwarz methods directly to thean example of a mesh used to compute the early evolution
consistent Poisson operator which governs the pressure inof wake vortices at ReD 5 UyD/n 5 9500. Figure 1b shows

the vortex structure at a nondimensional time of t 5 tUy/ the PN 2 PN22 spectral element method. In several large
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The outline of the remainder of the paper is as follows.
In Section 2, we review the spectral element formulation
for the unsteady Navier–Stokes equations, derive the sys-
tem governing the pressure, and demonstrate numerical
convergence of the method. In Section 3, we examine the
potential of several finite element-based Laplacian opera-
tors as a basis for the pressure preconditioner. In Section
4, we couple an additive Schwarz method with the low-
order Laplacian to develop a new preconditioner and dem-
onstrate a technique for overcoming some of the difficulties
presented by high-aspect-ratio subdomains. We draw some
conclusions about this approach in Section 5, and present
arguments favoring the choice of linear finite element pre-
conditioning in the Appendix.

2. NAVIER–STOKES DISCRETIZATION

As the nature of the pressure operator is quite different
from discrete Laplacians based upon standard weighted
residual techniques, we carefully review the temporal and
spatial discretization for the spectral element method. We
consider the solution of the incompressible Navier–Stokes
equations is Rd, d 5 2 or 3,

u
t

1 u ? =u 5 2=p 1
1

Re
=2u in V,

= ? u 5 0 in V,

(1)

where u 5 (u1 , ..., ud) is the velocity vector, p the pressure,
and Re 5 UL/n the Reynolds number based on a character-
istic velocity, length scale, and kinematic viscosity. We
have associated initial and boundary conditions

u(x, 0) 5 u0(x), u 5 uv on Vv , (2)

=ui ? n̂ 5 0 on Vo ,

where n̂ is the outward pointing normal on the boundary,
and subscripts v and o refer to boundary regions where
either ‘‘velocity’’ or ‘‘outflow’’ boundary conditions are
specified.

2.1. Temporal Discretization
FIG. 1. (a) Close-up of K 5 6112 spectral element mesh for computa-

tion of start-up flow past a cylinder at Re 5 9500; (b) vorticity contours Temporal discretization is based upon an operator split-
at a convective time of t 5 3.10; (c) drag coefficient CD vs nondimensional ting approach in which the nonlinear convective terms are
time (computation by G. W. Kruse).

decoupled from the viscous and divergence operators via
an operation-integration-factor (OIF) technique devel-

production runs, we have found this new method to yield oped by Maday et al. [26] and studied in detail in the thesis
a fivefold reduction in Navier–Stokes solution times over of Couzy [8]. The OIF scheme leads to a Stokes problem
the deflation-based scheme used previously [17, 18, 39]. of the form
Moreover, in some of these runs, the conditioning is im-
proved to the point where 32-bit arithmetic suffices in cases
previously requiring 64-bit precision, resulting in a twofold

H un 1 =pn 5 b1ũn
1 1 b2ũn

2 in V,

= ? un 5 0 in V.
(3)

savings in storage.
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Here H is the Helmholtz operator H 5 (2(1/Re) =2 1 Spatial discretization proceeds by restricting u, v, p, and
q to compatible finite-dimensional velocity and pressureb0/Dt), and b0 5 Ds , b1 5 2, and b2 5 2 As are coefficients

associated with second-order backward differentiation subspaces, X N , X and Y N , Y, respectively, and using
appropriate quadrature to approximate the inner products(BDF2). The inhomogeneous terms, ũn

l ; ũl(x, tn), are
computed as solutions to the pure convection problem: in (5):

Find u [ X N, p [ YN such that:
ũl

t
1 u ? =ũ 5 0,

(4)
ũl(x, t n2l) 5 u(x, t n21).

1
Re

(=u, =v)GL1
b0

Dt
(u, v)GL 2 (p, = ? v)G 5 (f, v)GL ;v [ X N

0

2 (q, = ? u)G 5 0 ;q [ Y N,The initial value problem (4) is solved using an explicit
fourth-order Runge–Kutta scheme with step size Ds # Dt (7)
which satisfies appropriate CFL criteria. The values of u
in (4) are interpolated/extrapolated from the previous ve-

where the quadrature rules (.,.)GL and (.,.)G will be relatedlocity fields (un21, ..., un2l). Note that the motivation for
to the spaces X N and Y N. To simplify subsequent operatorthe OIF/BDF2 formulation is to decouple the CFL-limited
definition, we symmetrize the problem (7) by introducingconvection steps from the implicit Stokes problem in order
the splitting u 5 u0 1 ub , where u0 5 0 on Vv and ubto permit a much larger step size, Dt, between (expensive)
is any known function in X N. This yields the followingStokes solves. Typical values of the CFL number, maxV

restatement of the Stokes problem:(UDt/Dx), for our spectral element calculations are on the
order of 2 to 5. Numerous numerical tests have verified

Find u0 [ X N
0 , p [ Y N such that:that the accuracy of this approach is indeed O(Dt2). In the

following, we drop the superscript n in (3) and define the
forcing function f 5 b1ũ1 1 b2ũ2 . 1

Re
(=u0 , =v)GL 1

b0

Dt
(u0, v)GL

2.2. Spatial Discretization
2 (p, = ? v)G 5 (fv , v)GL ;v [ X N

0 (8)
The Stokes problem (3) can be recast in an equivalent

variational form: 2 (q, = ? u0)G 5 (q, = ? ub)G ;q [ Y N,

Find u [ X, p [ Y such that
where fv is the augmented inhomogeneity which incorpo-
rates the boundary terms.

In the spectral element method [25, 36] the bases for
1

Re
(=u, =v) 1

b0

Dt
(u, v) 2 (p, = ? v) 5 (f, v) ;v [ X0

2 (q, = ? u) 5 0 ;q [ Y,
X N and Y N are defined by tessellating the domain into K
nonoverlapping subdomains, V 5 <

K
k51Vk, and represent-

ing functions within each subdomain in terms of tensor-(5)
product polynomials on a reference subdomain V̂ 5 [21,
11]d. (We will refer to the Vk’s as subdomains to distin-where
guish them from elements which will be defned in the con-
text of finite element preconditioners in the next section.)

;f, c [ L 2(V), (f, c) ; E
V

f(x)c(x) dx. (6) Each Vk is the image of the reference subdomain under a
mapping; xk(r) [ Vk ⇒ r [ V̂, with a well-defined inverse;
rk(x) [ V̂ ⇒ x [ Vk. Thus, each subdomain is a deformedThe proper subspaces for u, v and p, q are [20]
quadrilateral in R2 or a deformed parallelpiped in R3. The
intersection of the closure of any two subdomains is a void,X 5 hv : vi [ H 1(V), i 5 1, ..., d, v 5 uv on Vvj
a vertex, an entire edge, or an entire face.

X0 5 hv : vi [ H 1(V), i 5 1, ..., d, v 5 0 on Vvj To avoid spurious pressure modes, Maday et al. [27] and
Bernardi and Maday [2] suggest the following approxima-Y 5 L 2(V).
tion spaces for the velocity and pressure:

Here L 2(V) is the space of all functions which are square
integrable over V and H 1(V) is the space of all functions X N 5 X > P

d
N,K(V) (9)

belonging to L 2(V) whose first derivatives are also in
L 2(V). Y N 5 Y > PN22,K(V),
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where Jk(r) is the Jacobian arising from the transformation
xk(r), ri is the GL quadrature weight associated with j i ,
and si is the G quadrature weight associated with hi. The
extension to R3 follows readily from the tensor-product
forms. It has been shown both numerically and theoreti-
cally that the spectral element solution to the Stokes prob-
lem converges exponentially as N R y for problems having
smooth solutions [25].

2.3. Spectral Element Operators
FIG. 2. Spectral element configuration (K 5 4, N 5 5) showing La-

grange interpolation points for the pressure (Gauss) mesh on the left, The locally structured/globally unstructured bases of the
and for the velocity (Gauss–Lobatto) mesh on the right. Open circles spectral element method naturally define a two-level oper-
denote true degrees of freedom. Solid circles denote Dirichlet boundary

ator and data hierarchy which we now describe. Our nota-nodes for velocity.
tion will be two-dimensional, restricted to the case of affine
mappings: xk(r1 , r2) 5 (xk

0,1 1 (Lk
1/2)r1 , xk

0,2 1 (Lk
2/2)r2),

where xk
0,i and Lk

i represent local translation and dilation
where constants.

We first define the bases and operators associated with
PN,K(V) 5 the velocity space. Every scalar field in PN,K(V) is repre-

sented in the formhv(xk(r))uVk [ PN (r1) ^ ??? ^ PN (rd), k 5 1, ..., Kj

(10)
f(x)uVk 5 ON

i50
ON
j50

f k
ijhi(r1)hj(r2), r1 , r2 [ [21, 1]2, (13)

and PN (r) is the space of all polynomials of degree less than
or equal to N in the argument. Note that the dimension of
Y N is K(N 2 1)d since function continuity is not enforced where hi(r) [ PN(r) is the Lagrange polynomial satisfying
for functions in Y N. However, the dimension of XN is less hi(j j) 5 dij , and dij is the Kronecker delta function. For
than dK(N 1 1)d due to the restriction that functions in each subdomain, we associate a natural ordering of the
X N must be continuous across subdomain interfaces and nodal values f k

ij , i, j [ h0, ..., Nj2, with the vector f k and,
must also satisfy Dirichlet boundary conditions on Vv . in turn, associate a natural ordering of the vectors f k, k [

For the velocity space, we choose as a basis for PN(r) h1, ..., Kj, with the K(N 1 1)2 3 1 vector fL .
the set of Lagrangian interpolants on the Gauss–Lobatto We define the unassembled mass matrix to be the block-
Legendre (GL) quadrature points in the reference domain: diagonal matrix BL ; diag(Bk), where each local mass
ji [ [21, 11], i 5 0, ..., N, whereas for the pressure space, matrix is expressed as a tensor product of one-dimen-
the basis for PN22(r) is the set of Lagrangian interpolants sional operators:
on the Gauss Legendre (G) quadrature points hi [] 2 1,
11[, i 5 1, ..., N 2 1. Figure 2 shows the nodal points for
both the velocity (GL) and the pressure (G) meshes for a Bk 5 SLk

1Lk
2

4 D B̂ ^ B̂. (14)
regular subdomain configuration. Note that the basis for
velocity is continuous across subdomain interfaces, while
the basis for the pressure is not. Here B̂ 5 diag(ri), i 5 0, ..., N. The inner product (11) is

The Lagrangian bases permit convenient implementa- then expressed in terms of the mass matrices as
tion of the quadrature rules which we now define. Let
f k(r) ; f(xk(r)), r [ V̂. In R2 we have

;f, g [ PN,K(V), ( f, g)GL 5O
k

( fk)TBkgk 5 fT
LBLgL . (15)

( f, g)GL

In a similar fashon, we develop an expression for the bilin-; O
k
ON
i50

ON
j50

f k(j i , j j) ? gk(j i , j j) ? uJk(j i , j j)u ? rirj (11)
ear form (=f, =g):

( f, g)G
;f, g [ PN,K(V), (=f, =g)GL 5O

k
( f k)TAkgk 5 f T

LALgL .
; O

k
ON21

i51
ON21

j51
f k(hi , hj) ? gk(hi , hj) ? uJk(hi , h j)u ? sisj, (12)

(16)
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Here, AL 5 diag(Ak) is the unassembled stiffness matrix ;f,g [ PN,K(V)> H 1, (=f, =g)GL 5 f TQTALQg. (21)
and Ak is the local stiffness matrix:

We define QTALQ as the Neumann Laplacian operator—it
has a null space of dimension unity corresponding to the

Ak 5 SLk
2

Lk
1
D B̂ ^ Â 1 SLk

1

Lk
2
D Â ^ B̂. (17) constant mode. We define the associated Dirichlet opera-

tor as MQTALQM, where M is the diagonal mask matrix
having ones on the diagonal at points qijk : xk

ij [ V < Vo ,The one-dimensional stiffness matrix, Â, is defined in terms
and zeros elsewhere. With the operators Q and M, theof the spectral differentiation matrix, D̂,
following problems are equivalent: For f [ PN,K(V),

Find u [ X N
0 , such that

Âij 5 ON
l50

D̂lirlD̂lj , i, j [ h0, ..., Nj2 (18)

(=v, =u)GL 5 (v, f)GL ;v [ XN
0 ; (22)

with
Find u [ R(M), such that

vTMQTALQMu 5 vTMQTBL fL ;v [ R(M). (23)D̂ij ;
dhj

dr Ur5ji

, i, j [ h0, ..., Nj2. (19)

Here, R( ) is the range of the argument, and fL is the vector
Deville and Mund [10] noted that, whereas Â is full, the of nodal values of f(x). The direct-stiffness-summation op-
two-dimensional operator, Ak, is sparse due to the use of erator Q ensures that the solution will lie in H 1, while the
the diagonal mass matrix, B̂. In fact, the computational mask M enforces the homogeneous Dirichlet boundary
‘‘stencil’’ of Ak is a cross, much like a high-order finite- condition: u 5 0 on Vv . We define the discrete Laplacian
difference stencil. For deformed subdomains Ak is gener- and mass matrices as
ally full with (N 1 1)d nonzero entries. Nonetheless, it was
pointed out by Orszag [33] that the action of Ak upon a A ; MQTALQM, (24)
vector can be efficiently computed in O(Nd11) operations

B ; MQTBLQM, (25)if one retains its tensor-product form in favor of its explicit
formation. Implementation details for fully deformed

respectively. We will treat them as being both invertiblethree-dimensional geometries can be found in [14].
and symmetric positive definite (SPD), although this is notThe local subdomain operators are incorporated into
strictly true due to the null space associated with theglobal nv 3 nv system matrices by defining an index set
boundaries.qijk [ h1, ..., nvj which maps vectors from their local

representation, fL , to their global form, f. The index set
2.4. Stokes Operatorshas repeated entries for any node (i, j, k) which is

physically coincident with another node (i9, j9, k9), i.e., To complete the description of the Stokes operator we
need to consider the bilinear form:

qijk 5 qi9j9k9 iff xk(ri , rj) 5 xk9(ri9, rj9). (20)

(q, = · u)G 5 Od
l51
Sq,

ul

xl
D

G
. (26)The index map can be represented in matrix form as a

prolongation operator Q which maps from the set of global
indices to the local index set. Q is a K(N 1 1)d 3 nv Using the definition (12), the contribution to (26) from a
Boolean matrix with a single ‘‘1’’ in each row and zeros single element in R2 is given by
elsewhere. If m 5 (k 2 1)? (N 1 1)2 1 j · (N 1 1) 1 i 1
1 is the position of f k

ij in fL , and q 5 qijk is the corresponding
global index, then the mth column of QT is the unit vector Od

l51
ON21

i51
ON21

j51
qk(hi , hj) ?

uk
l

xl
(hi , hj) · uJ k(hi , hj)u · sisj . (27)

êq , i.e., the qth column of the identity matrix. Application
of Q to a vector implies the distribution of information,
whereas application of QT to a vector implies summation, The contribution from q presents no difficulty, as it is

represented by Lagrangian interpolants on the Gaussor gathering of information. QT is sometimes referred to
as the ‘‘direct-stiffness-summation’’ operator. points, i.e., qk(hi , hj) 5 qk

ij . The derivative of the velocity
must be interpolated, giving rise to the following matrixA direct consequence of the unique mapping property

(20) and the use of Lagrangian basis is that form:
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which preconditioned conjugate gradient iteration is a nat-
(q, = · u)G 5 OK

k51
(qk)T (Dk

1uk
1 1 Dk

2uk
2). (28) ural choice.

A common approach to solving the Stokes problem is
to decouple the velocity and pressure by formally carryingFor the case of the affine mappings defined above, the
out block LU factorization (Uzawa decoupling) on thelocal derivative matrices are defined as
system (32). This yields the Schur complement system for
the pressure,

Dk
1 5 SLk

2

2 D Ĩ J D̃, Dk
2 5 SLk

1

2 D D̃ J Ĩ, (29)
Sp 5 g, (33)

where
which is solved iteratively. Here, S 5 oiDiH21DT

i and g is
the corresponding inhomogeneity. Once the pressure isĨij 5 sihj(hi) (30)
known, d Helmholtz solves serve to compute the velocity
and complete the solution at time level n.

is the weighted one-dimensional interpolation matrix
As it stands, the Uzawa approach requires a set of d

mapping from the Gauss–Lobatto points to the Gauss
Helmholtz solves for each iteration, since H21 is embedded

points, and
in S. An effective means for circumventing this difficulty
is to decouple the viscous and pressure terms via an addi-
tional time splitting. Such an approach was suggested byD̃ij 5 si

dhj

dr Ur5hi

(31)
Maday et al. [26] and clearly analyzed in the articles of
Blair Perot [3] and Couzy [8]. The approach has a common
foundation with classical splitting approaches (e.g., [19,is the weighted one-dimensional differentiation matrix, in-
32]) which lead to a Poisson equation for the pressure saveterpolated onto the Gauss points.
that, in the present case, the splitting is effected in theThe extension from the local operator to the global oper-
discrete form of the equations. The correct boundary con-ator proceeds exactly as in the previous section. The space
ditions are preserved and no steady-state temporal errorsof admissible functions in XN

0 is limited by the constraints
are introduced.that the velocity must be continuous at the subdomain

Following [8], we rewrite the Stokes system (32) by intro-interfaces and must satisfy the homogeneous boundary
ducing an auxiliary system Q:conditions, enforced by the action of the operators Q and

M, respectively.
Let Di ; DL,iQM, i 5 1, ..., d, with DL,i ; diag(Dk

i ). In
R2, the matrix form of the Stokes problem (8) is then F H 2HQDT

2D 0
G1un

pn 2 pn2125 1Bf 1 DTpn21

fp
21 1r

02 .

(34)

Here, boldface indicates the d-dimensional vector form of3
H 2DT

1

H 2DT
2

2D1 2D2 0
41

u1

u2

p
251

f1

f2

fp

2 , (32)
the previously defined operators, and the residual term is

r 5 (HQ 2 I)DT(pn21 2 pn). (35)
where H 5 (1/Re)A 1 (b0/Dt)B is the discrete Helm-
holtz operator. Couzy [8] examines several choices for Q. The choice

Q 5 H21 yields no splitting error (r 5 0), while the more
2.5. Stokes Solvers computationally convenient choice Q 5 (Dt/b0)B21 leads to

We now consider the solution of the unsteady Stokes
problem represented by the linear system (32). As noted r 5

Dt
b0Re

AB21DT(pn 2 pn21) 5 O(Dt2). (36)
in the previous section, explicit formation of the spectral
operators will lead to O(KN2d) nonzeros in the operators
A and Di , whereas their action upon a vector can be com- Since there is a factor of Dt21 in front of the velocity in

(34) the local truncation error incurred by neglecting r isputed in O(KNd11) operations. This, coupled with the large
system bandwidth which is inevitable in any three-dimen- O(Dt3), and the method is formally second-order accurate

in time. This is borne out by numerical results at the endsional calculation, mandates the use of iterative solvers.
The choice of Legendre-based quadrature (vs, say, Chebys- of this section.

Dropping the residual in (34) and formally carrying outhev) results in symmetric positive definite operators for
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a single round of block Gaussian elimination leads to the
reformulated Stokes problem to be solved at each time u0(x, y) 5 1 2 Sy

hD2

1 «û

v0(x, y) 5 «v̂,
(39)step;

where (û, v̂) corresponds to the only unstable eigensolution3H 2
Dt
b0

HB21DT

0 E
41un

pn 2 pn2125 1Bf 1 DTpn21

g 2 , (wave number unity) of the Orr–Sommerfeld equation.
The Reynolds number is Re 5 Uch/n 5 7500, based upon
the centerline velocity, Uc 5 1. A constant body force is(37)
applied to sustain the mean flow. The perturbation velocity
is normalized to uûu 5 1 and « is set to 0.00001. The spectral
element discretization consists of K 5 15 subdomains inwhere
the configuration shown in Fig. 3. The calculations are
performed in 64-bit arithmetic with iteration tolerances set
to 10213 in order to observe high-order spatial and second-E ; Dt

b0
Od
i51

DiB21DT
i , (38)

order temporal convergence rates.
According to linear theory, the energy of the pertur-

bation
and g is the modified inhomogeneity arising from Gaussian
elimination. The advantage of the splitting procedure is

E(t) 5 E2f

0
E1

21
h(1 2 y2 2 u)2 1 v2j dy dx (40)that matrix vector products involving E can be computed

without system solves, since B is diagonal. It can be shown
that E is SPD, save a possible one-dimensional null space should grow as e2git, where gi 5 0.002234976. Following
associated with the hydrostatic pressure mode in cases [28], we take as a measure of error the quantity: error(t) 5
where Vo 5 B. e2git 2 E(ti)/E(0), where E(ti) is derived from our computed

To summarize, time advancement of the Navier–Stokes Navier–Stokes solution at times t1 5 25.1437 and t2 5
equations involves advancing the convective terms through 50.2873, corresponding to one and two periods of oscilla-
the soution of (4), solving for the viscous contribution in tion for the TS waves, respectively. In addition, we com-
the construction of g (37), solving for the pressure ((37) pute the error in the growth rate at time t 5 50 according to
and (38)), and finally computing the divergence-free solu-
tion, un (37). The systems involving H and E are solved

errorg 5
1
gi
Ugi 2

1
2Dt

ln S E(50)
E(50 2 Dt)DU . (41)iteratively. Typically, Dt/Re is small, implying that H 5

(1/Re)A 1 (b0/Dt)B is strongly diagonally dominant and
readily amenable to solution via Jacobi preconditioned

Table I shows the computed energies and the error forconjugate gradients. E is the more challenging operator.
varying Dt with N 5 17. The error is clearly O(Dt2). TableAs shown in [3, 39] it has properties similar to a Poisson
II shows the results for a spatial convergence study carriedoperator, and is often referred to as a ‘‘consistent Poisson
out using a third-order accurate (though less stable) imple-operator.’’ Its condition number is independent of Dt and
mentation of the above time stepping algorithms, withRe. In the remaining sections of this paper, we address
Dt 5 0.003125. The convergence is nonmonotonic due topreconditioning strategies for the E operator.
the fact that the growth rates are oscillating about the
analytical value. However, spectral convergence is

2.6. Numerical Study of the Orr–Sommerfeld Problem clearly attained.

To close this section, we demonstrate the accuracy of
the numerical method outlined above by computing the
growth rates of small-amplitude two-dimensional Toll-
mien–Schlichting (TS) waves in plane Poiseuille flow, fol-
lowing [28, 38]. This benchmark is useful for verifying both
temporal and spatial convergence in that it is an unforced
time-dependent Navier–Stokes problem for which accu-
rate solutions are available from linear stability theory.

The geometry consists of two walls separated by a dis-
tance 2h with periodic boundary conditions in the stream- FIG. 3. Spectral element mesh (K 5 15) and perturbation stream

function for Orr–Sommerfeld problem.wise direction at x 5 0 and x 5 2fh. The initial condition is
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TABLE I commonly found in operators derived from finite element
bases of compact support. Consequently, E cannot beTemporal Convergence, O–S Problem: K 5 15, N 5 17
readily treated by substructuring, or Schur complement,

Dt E(t1) error1 E(t2) error2 errorg approaches as in [6, 37]. In addition, there are no boundary
conditions associated directly with the pressure, as bound-

0.20000 1.13215830 0.013208 1.28480818 0.032758 0.11213 ary conditions for the Stokes problem are applied in the
0.10000 1.12278058 0.003830 1.26120270 0.009153 0.03347

velocity space.0.05000 1.11997704 0.001026 1.25446507 0.002415 0.00896
Despite the L 2 approximation space used for the pres-0.02500 1.11921579 0.000265 1.25266990 0.000620 0.00230

0.01250 1.11901773 0.000067 1.25220678 0.000157 0.00058 sure it is nonetheless clear that E is related to a Laplacian
0.00625 1.11896723 0.000017 1.25208917 0.000040 0.00015 on V. This can be seen most readily from the continuous

analog by taking the divergence of the momentum equa-
tion in (1) to derive a Poisson equation for the pressure.
The article of Blair Perot [3] explores this relationship

3. LAPLACIAN-BASED PRECONDITIONING FOR in detail.
THE PRESSURE As the starting point, we consider the variational formu-

lation of the Poisson problem:
Since E (38) is symmetric positive definite, it is natural to

Find p̃ [ Zh
p(V), such thatconsider conjugate gradient iteration as an iterative solver

[22]. The development of a fast solver requires finding an
(=v, =p̃)p 5 (v, f)p ;v [ Zh

p(V), (42)SPD preconditioning matrix, M21, which can be inexpen-
sively applied and which renders the condition number of

where the space Zh
p and quadrature rules (., .)p will beM21E as close to unity as possible. In this section, we

defined implicitly in the subsequent choice of basis for theexamine the potential of three discrete Laplace operators
discrete problem. The boundary conditions for p̃ areas alternatives to working with the more cumbersome ma-

trix E in the ultimate development of our additive Schwarz
preconditioner. The first two are based upon the Gauss– =p̃ · n 5 0 on Vv , p̃ 5 0 on Vo , (43)
Lobatto (H 1) mesh, for which a natural triangulation of
the domain exists. The third is based upon the Gauss points which are derived from standard pressure-splitting formu-
and is more difficult to develop. However, it is surprisingly lations of the Navier–Stokes equations, e.g., [3, 19, 32].
effective, and has proven to be the key to developing a Once the basis and quadrature formulae are chosen, the
fast solver for this problem. preconditioner is constructed by combining the resultant

stiffness matrix, Ap , with a suitable restriction operator, R,
3.1. Preconditioners to yield

One of the fundamental difficulties in developing a pre-
M21

p 5 RTA21
p R. (44)conditioner for E is that the interdomain coupling leads

to a fully connected graph between adjacent subdomains;
In all the cases we consider, RT is simply an interpolanti.e., every degree of freedom in a given subdomain is cou-
from the nodal basis of Zh

p onto the nodal points for thepled to every degree of freedom in its adjacent subdomains.
Lagrangian basis of YN. In general, exact solution of theIf formed explicitly, E would correspondingly have approx-
system Ap will be too expensive for problems of practicalimately 3d(N 2 1)d nonzeros per row for a geometry con-
interest and an appropriate surrogate must be developed.sisting of a regularly structured array of subdomains. Thus,
However, to illustrate the potential of the Laplacian-basedE has no natural interface structure,or separator, such as
preconditioning strategy, we make a brief preliminary
study of three choices for (Ap , RT) when exact solvers are
used for A21

p .
TABLE II

The first choice is
Spatial Convergence, O–S Problem: K 5 15, Dt 5 0.003125

M21
s 5 RT

vpA21
s Rvp , (45)

N E(t1) error1 E(t2) error2 errorg

7 1.11498657 0.003963 1.21465285 0.037396 0.313602 where RT
vp is the spectral interpolation operator from the

9 1.11519192 0.003758 1.24838788 0.003661 0.001820 velocity mesh to the pressure mesh, and As is the spectral
11 1.11910382 0.000153 1.25303597 0.000986 0.004407 element Laplacian on the velocity mesh, with associated
13 1.11896714 0.000016 1.25205855 0.000009 0.000097

boundary conditions of homogeneous Dirchlet at outflow15 1.11895646 0.000006 1.25206398 0.000014 0.000041
and homogeneous Neumann elsewhere. Other than a
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change in the mask, As 5 M pQTALQMp is identical to A. on Vk are shared by adjacent subdomains and thus serve
to define the connectivity between those domains. In theIn particular, the interdomain connectivity effected by Q

is preserved and software-development costs are conse- case of the Gauss points, there are no shared points be-
tween domains and the triangulation used to interconnectquently minimal. We note that As is a viable preconditioner

as it is roughly a factor of d less costly to apply than E subdomains can be rather arbitrary, particularly at the
corners where an unspecified number of subdomains mustsince E first maps a scalar field to a vector field, and then

maps back to a scalar (38), whereas As is simply a scalar– be joined together.
In order to provide a mechanism for imposing Dirichletscalar mapping. Moreover, the Laplacian is readily avail-

able in the context of any Navier–Stokes solver as it is an boundary conditions and avoid development of a general-
purpose triangulation routine, we propose the followingessential building block of any such code.

As a second choice, we consider tiling scheme for connecting adjacent sets of Gauss points
together. The ‘‘tile’’ is defined in a self-contained manner
that reduces the global triangulation problem to a localM21

t 5 RT
vpA21

t Rvp , (46)
one which is then solved for each subdomain. Within each
subdomain, the triangulation proceeds in three steps. Firstwhere At is the discrete Laplacian derived from linear finite
the (N 2 2)2 rectangles associated with the nodes (hi , hj)elements based upon a triangulation of the Gauss–Lobatto
are divided into two triangles each. Then, the edges andpoints of the originating spectral element discretization,
boundary regions are triangulated. Finally, the regions inand RT

vp is the spectral interpolant described above. The
the vicinity of the vertices are triangulated.technique of using low-order operators as preconditioners

To triangulate the edge regions, we begin by notingfor spectral methods was first proposed by Orszag [33],
that, for the conforming spectral element discretizationsand has been studied by many others, including numerous
considered here, each domain has either a neighbor or aarticles by Deville, Mund, and co-workers, e.g., [9–11].
boundary condition associated with each of 2d edgesThe principal advantage of this approach is that the degra-
(faces). In the case where the edge separates two subdo-dation in convergence rate is offset by the increased spar-
mains, we connect corresponding nodes on either side ofsity of At over As . The connectivity of At can be effected
the separating edge to form N 2 2 quadrilaterals. In thein the same manner as As and one therefore only needs
case where the edge corresponds to Dirichlet boundaryto develop a triangulation of the Gauss–Lobatto points on
conditions (for p̃), we add ‘‘ghost’’ points along the edgethe reference subdomain.
at locations (21, hj) for a left boundary, (11, hj) for aFinally, we consider a third choice,
right boundary, (hi , 21) for a lower boundary, and
(hi , 11) for an upper boundary, all defined with respectM21

g 5 RT
augA21

g Raug , (47)
to the reference subdomain. Because these points coincide
with the Dirichlet boundary, no new degrees of freedom

where Ag is the discrete Laplacian derived from linear are introduced by this procedure. If the boundary is a
finite elements based upon a triangulation of the Gauss Neumann boundary, the tile is not extended beyond the
(pressure) points, augmented with additional points to be Gauss points; the boundary condition is applied directly
described further in the next section. Since the pressure is to these points even though they are actually separated
already represented by nodal values on the Gauss points, from the boundary by a distance of O(N 22). Once the
RT

aug is a Boolean operator which is essentially the identity edges are extended, the resultant quadrilaterals are subdi-
matrix, save for the addtion of some zero rows to account vided into triangles. The dividing line extends from the
for the additional vertices. Consequently, the cost of highest globally numbered vertex in each quadrilateral to
applying RT

aug is nil, in contrast to RT
vp for which the cost ensure that the triangulation is consistent from one tile to

scales as O(KNd11). Moreover, the dimension of Ag is ap- the next.
proximately K(N 2 1)d, whereas the dimension of As and The vertex regions are a potential source of difficulty
At is approximately KNd (not K(N 1 1)d, due to the shared in developing a standardized subdomain interconnection
interface variables). Note that it is not possible to interpo- scheme because an unspecified number of subdomains may
late onto a lower-order grid (e.g., a polynomial of degree be joined at each vertex. While triangulation of this region
N 2 1) in developing Ms as the boundary conditions would presents no particular difficulty in R2, finding a tetrahedral
reduce the dimension of As to less than K(N 2 1)d, thereby decomposition subject to conformity with the surrounding
making M21

s singular. region in R3 is not an easy task. This difficulty can be
eliminated in either R2 or R3 by augmenting the Gauss

3.2. Tiling the Gauss Points
points with the set of points comprising the subdomain
vertices. In R2, a line is then extended from each of theOne of the attractive features of triangulating the veloc-

ity (Gauss–Lobatto) mesh is that the points which reside four vertices to the corresponding (closest) Gauss point
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FIG. 5. Spectral element mesh (K 5 93) for iterative convergence study.

FIG. 4. Spectral element configuration (K 5 9, N 5 4) showing stan-
dard ‘‘tiling’’ of the Gauss points for a subdomain with four neighboring

While this problem is hardly canonical, it is typical ofsubdomains (left); a subdomain with two Neumann boundaries (right,
upper left); and a subdomain with one Neumann and one Dirichlet bound- the types of domains encountered in practice. It contains a
ary (right, upper right). Solid circles denote Dirichlet boundary nodes. spectrum of subdomain shapes and sizes which, combined,

have pronounced effect on the convergence behavior of
many iterative solvers. A comparison of this particularinterior of Vk. At each vertex, additional lines are extended
problem in contrast to a regular tessellation of a squareto the nearest point on the extended edges defined in the
has been carried out in [18]. It was noted there, and in thepreceding paragraph. If either of the subdomain edges
thesis of Couzy [8], that irregular domains can lead tocorresponds to a Newmann boundary (no extension) then
significant degradation of the convergence rate of the de-the augmented vertex is eliminated and the corresponding
flation-based solver we have been using up to the presentregion is not triangulated.
[17, 39]. We remark that the first time step is the mostExamples of the basic tiles are shown in Fig. 4 for a
difficult as the full spectrum of the pressure must be com-K 5 9 subdomain configuration. The union of all such
puted, rather than just the perturbation from the previoustilings defines the triangulation for the finite element oper-
step. Moreover, the initial condition, u0, is not even diver-ator Ag . Note the addition of four ‘‘ghost’’ vertices coinci-
gence free which makes the projection onto a divergence-dent with the four vertices of the central subdomain. These
free space all the more difficult. In practice, in subsequentare degrees of freedom in the Ag system, but are not enu-
time steps, the right-hand side will be largely devoid ofmerated in the range of the prolongation operator RT

aug ;
low-wave-number components as they can be eliminatedi.e., the values of the residual are allowed to float at these
by projecting onto the space of previous solutions [15].points, but they make no direct contribution to the output

Table III shows the number of iterations required toof the preconditioner. A more expensive alternative would
reduce the residual of the E system on the first step bybe to have the restriction operator, Raug , take the average
1025 for the three Laplacian-based preconditioners justof the surrounding values in computing the right-hand side
described. The K 5 372 and K 5 1488 meshes are obtainedat the ghost points.
through successive quarterings of the elements in the baseAfter the tile has been defined for each domain, a
configuration. The dimension of the E system is K(N 2cleanup routine removes all multiply defined triangles. The
1)2. Note that the spectral preconditioner exhibits no Kentire procedure can be defined in the context of the (ex-
dependence in the iteration count for this problem, whiletended) reference element without having to consider nu-
the finite element preconditioners exhibit mild degradationmerous special cases, and is readily extended to R3.
in convergence rate.

Of the two finite element preconditioners, it is clear that3.3. Numerical Results for Laplacian Preconditioning

We now test the preconditioners Ms , Mt , and Mg for the
problem of start-up flow past a cylinder in the half-domain

TABLE III
V 5 [210, 28] 3 [0, 15]. Figure 5 shows the subdomain

Laplacian Preconditioners for Cylinder Flowconfiguration for the baseline case of K 5 93. A cylinder
of diameter D 5 1 is centered at the origin. The Reynolds

N 5 7 N 5 9
number is Re 5 DU/n 5 5000, where (U, 0) is the free-
stream velocity taken as the initial condition and inflow K Ms Mt Mg Ms Mt Mg

boundary condition at x 5 210. Symmetry boundary con-
93 15 24 16 12 27 16ditions are imposed at y 5 0 and y 5 15 with Neumann-

372 12 26 18 12 28 17
velocity (outflow) boundary conditions at x 5 28. The free- 1488 12 26 18 12 29 18
stream velocity is U 5 1 and the time step is Dt 5 0.025.
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Mg is to be preferred over Mt . Not only does it yield a lower uniform. Currently, we are insisting that our coarse grid
space coincide with the subdomains which are predeter-iteration count, it has a much less expensive restriction

operator, and a lower-dimensional system to be solved mined by the original spectral element tessellation of V,
and hence do not have control over the uniformity of eitherwith each iteration. The only drawback of Mg is that it is

more complicated to triangulate the Gauss points than the the subdomains or the coarse grid space. We investigate
the consequences of this in the numerical results at theGauss–Lobatto points, something which is of particular

consequence in R3. end of this section and suggest some remedies.
The additive Schwarz preconditioner is expressed asIn the preceding examples, the choice of finite element

spaces was not arbitrary. Given the locally tensor-product (e.g., [1, 42])
spaces of the spectral element method, the natural choice
for a low-order finite element preconditioner would be

M21
o 5 RT

0 A21
0 R0 1 OK

k51
RT

k A21
k Rk , (48)bilinear (trilinear in R3) finite elements. However, linear

elements based upon triangles are not only easier to imple-
ment in complex geometries, but also have favorable condi-

which is the sum of the global coarse grid operator (sub-tioning properties over their bilinear counterparts. This
script 0) and local subdomain operators (subscript k). Thepoint is addressed in the Appendix.
method has a natural parallel aspect in that the subdomain
problems can be solved independently. While the coarse

4. OVERLAPPING SCHWARZ METHOD grid problem is not trivially parallelized it is usually of
sufficiently modest size to admit fast direct solution meth-One of the principal aims of employing the Laplacian-
ods, even in parallel (e.g., [16, 18, 21]).based preconditioner is to derive a preconditioner for the

The coarse grid operator, A0 , is constructed as the finiteE system which leads to a bounded iteration count. As
element Laplacian derived from linear elements whosedeveloped in the previous section, the Laplacian-based
vertices are coincident with the subdomain vertices; i.e.,preconditioner requires the solution of a system in Ag for
in R2, each subdomain is partitioned into two triangles.each iteration. In practice, this is too expensive from the
The boundary conditions are inherited from the variationalstandpoint of both storage and operation count, particu-
problem (42). The prolongation operator, RT

0 , is definedlarly in the three-dimensional case. However, the Lapla-
somewhat differently from standard (purely finite element-cian preconditioning strategy effectively reduces the prob-
based) domain deomposition methods. RT

0 is the operatorlem of solving the E system to one of solving a low-order
which interpolates the coarse grid solution onto the tensor-

H 1 operator, a problem which is well understood. In this
product array of Gauss points in the reference element V̂.section, we develop an overlapping additive Schwarz pre-
Thus, even in situations where some points lie outside ofconditioner, M21

o , based upon linear finite element discret-
the coarse grid triangulation in physical space, there is aizations of Poisson’s equation. M21

o can be used either as
natural interpolation operator to transfer the coarse grida preconditioner for solving the system Ag in (47), resulting
solution to the fine grid. This approach, coupled with ourin a nested iteration, or directly as a preconditioner for E.
treatment of Neumann boundary conditions for the fineWe have found the latter approach to significantly outper-
grid, ensures that the coarse grid covers the fine grid, whichform the former and therefore consider it the only option.
is required for stability according to Chan et al. [7].Though a fairly recent development [12, 13, 30], the

To define the subdomain operators, let Vk , k 5 1, ..., K,literature on additive Schwarz preconditioners is quite vast
be subsets of the augmented vertex set defined by theand the subject is covered in depth in at least four recent
tiling procedure of the previous section, and let R̂k be thebooks [1, 23, 41, 42]. The overlapping methods are based
Boolean restriction matrix defined such that R̂ku returnsupon a decomposition of the domain into overlapping sub-
the nodal values of u corresponding to the vertex set Vk .domains and solving local Poisson problems within each
The subdomain operators are defined assubdomain. In addition, a coarse grid problem is solved

which involves few degrees of freedom, but covers the
Ak ; R̂kAgR̂T

k . (49)entire domain. The solutions from the subproblems are
then added together to form the output of the precondi-
tioner. Ak is consequently a principal submatrix of Ag , the linear

finite element Laplacian on the augmented Gauss points.For finite element solution of Poisson’s equation, Dryja
and Widlund [12] have show that overlapping Schwarz To transfer the solution to the Gauss points, we define the

operator RT
k ; RT

augR̂T
k , which is essentially a map from Vkprocedures with a coarse grid space lead to bounded itera-

tion counts in the case of quasi-uniform subdomains. Cai to the Gauss points with extension by zero to points not
in Vk .[4] has derived a uniform bound in which this restriction

is lifted, provided that the coarse grid triangulation is quasi- For each subdomain, overlap is generated by starting
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TABLE IVwith the vertex set V0
k comprising the Gauss points interior

to Vk. Let No be the desired amount of overlap. Then, for Iteration Count and CPU Time for the Deflation Scheme
i 5 1, ..., No , set

Constant Linear Quadratic

V i
k 5 V i21

k < N i21
k , (50) K Iterations CPU Iterations CPU Iterations CPU

93 126 17. 80 12. 60 10.and finally, set Vk 5 V Nok . Here N i
k is the set of vertices

372 216 125. 120 75. 84 67.neighboring V i
k . A vertex is defined to be neighboring

1488 327 845. 159 467. 108 437.
V i

k if it is connected by at least one edge in the triangulation
to any vertex in V i

k . Note that No 5 0 is admissible and
corresponds to block-Jacobi preconditioning.

tion count is devoted to matrix–matrix products (mxm’s)4.1. Numerical Results for the Additive Schwarz
invoked in the application of one-dimensional spectral op-Preconditioner
erators (e.g., (18) and (19)). We have found that an mxm

We reconsider the cylinder problem (N 5 7, K 5 93, implemented with a completely unrolled inner-product
372, and 1488) of the previous section to illustrate several loop is roughly three times faster than most implementa-
aspects of the additive Schwarz scheme. As a baseline, we tions of dgemm for the values of N considered. The subdo-
compare the additive Schwarz procedure with the defla- main and coarse grid solves are computed using a version
tion-based solver we have been using to the present. of the banded SPD linpack solver, dgesl, modified to multi-

Briefly, for the baseline results, the consistent Poisson ply by the inverse of the diagonal elements, rather than
problem (37) is solved via the two-level iteration scheme divide, for each solve. Each system is reordered using re-
developed by Rønquist [39] in which a coarse grid operator verse Cuthill–McKee to minimize bandwidth. All CPU
is folded into a global conjugate gradient iteration through times (in seconds) are for an SGI Onyx with sufficient
deflation [29, 31]. A coarse (subscript c) and fine (subscript RAM to ensure that disk swapping is not required.
f) decomposition is effected through a subdomain-moti- Table IV shows the number of iterations and CPU time
vated prolongation operator J [ Rnp3m, where np 5 K(N required to reduce the pressure residual for the first time
2 1)d is the number of pressure degrees of freedom, and step by five orders of magnitude for the deflation scheme
m is the dimension of the coarse grid approximation space. using piecewise (discontinuous) constant, bilinear, and bi-
The column space of the prolongation operator J is in- quadratic coarse grid spaces. Our parallel production code
tended to approximate the span of the low eigenmodes of [16] has been based upon the piecewise constant prolonga-
the E system. The pressure is then expressed as p 5 tion operator. The higher-order coarse grid spaces were
Jpc 1 pf , leading to an algebraic reformulation of the origi- studied in [18] in an attempt to improve this scheme. Al-
nal problem as solvable fine and coarse subproblems, though the results of Table IV show a twofold reduction

in CPU time for the first time step, these extensions yielded
Ef pf 5 g 2 JE21

c J Tg, (51) only a 30% reduction in subsequent steps, and would be
even less effective in R3 due to the rapid increase in the

Ecpc 5 JTg 2 JTEpf , (52) dimension of the coarse grid problem. These two consider-
ations motivated the present study.

Table V shows the iteration count and CPU times forrespectively. Here Ef 5 E 2 EJE21
c JTE, and Ec 5 JTEJ.

Each application of the fine grid operator requires two the additive Schwarz procedure with varying amounts of
overlap. The No 5 0 column corresponds to block-Jacobimultiplications by E, plus the solution of the relatively

small (m 3 m) system, Ec . The fine system (51) is solved preconditioning (no overlap). Introducing a minimal
amount of overlap (No 5 1) reduces the iteration countby conjugate gradient iteration restricted to the comple-

ment of R (J), where R ( ) denotes the column space of almost twofold and the CPU time slightly less than twofold.
Increasing the overlap to No 5 3 does not yield muchthe argument. Once pf is established, the coarse grid prob-

lem is solved (directly) for pc , and the procedure is com- further improvement, and memory considerations conse-
quently favor the choice No 5 1. The importance of theplete. With appropriate application of a local, element-

based preconditioner to Ef , the condition number of the coarse grid is demonstrated in column 4 for the case No

5 3; in the absence of a coarse grid the iteration countfine system is significantly reduced relative to the originat-
ing E matrix. roughly doubles for each successive quad-level refinement

from K 5 93 to 1488.Since we are comparing CPU times as well as iteration
counts, a few remarks regarding implementation are in Although the results of the overlapping Schwarz scheme

are impressive, the fact that the iteration counts in the firstorder. In spectral element methods, 70 to 90% of the opera-
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TABLE V

Performance of the Additive Schwarz Algorithm

No 5 0 No 5 1 No 5 3 A0 5 0 No 5 var.

K Iterations CPU Iterations CPU Iterations CPU Iterations CPU Iterations CPU

93 121 10. 64 5.9 49 5.6 169 19. 45 5.4
372 203 74. 106 43. 73 39. 364 193. 75 32.

1488 303 470. 158 274. 107 242. 802 1798. 102 183.

1744 183 329. 97 199. 68 180. 801 2089. 78 163.

three columns are not bounded with K is somewhat forming discretizations, this implies splitting subdomains
along the entire length of the domain. The resultant con-disappointing. Figure 6 shows the residual history for

M21
o E with No 5 1 for K 5 93, 372, and 1488. All three figuration is shown in Fig. 8, along with contours of the mode

pfinal 2 p25 . Despite the fact that the K 5 1744 problemcurves show the same rapid initial convergence. However,
after the 25th iteration, there appears to be a persistent has more degrees of freedom, the convergence rate is supe-

rior to the K 5 1488 case, as seen in Fig. 6 and in the lastmode which prevents the convergence from otherwise
being order-independent. This mode can be viewed by row of Table V.

A more viable approach to curing the aspect-ratio prob-taking the difference between the 25th and final iterates,
as shown in Fig. 7 for K 5 1488. The mode is clearly lem is to change the preconditioner. One possibility is to

regularize the coarse grid space by adding additional nodescentered about the high-aspect-ratio (HAR) subdomains
and suggests that elimination of such domains might to the coarse grid triangulation, as suggested by Cai [4].

However, this requires retriangulating the coarse grid andimprove convergence.
An easy way to alleviate the aspect-ratio problem is to is inherently nonlocal. A more readily implemented

scheme, proposed by Widlund [43], is to increase the over-simply subdivide the HAR subdomains along the appro-
priate axis. Since we are currently considering only con- lap only for subdomains having a high aspect ratio. After

FIG. 6. Residual history showing deterioration of convergence rate for K 5 93 R 1488 (left). Convergence is improved for regularized geometry
and/or variable overlap (right).
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FIG. 7. Spectral element mesh (K 5 1488) showing resistant pressure mode centered about high-aspect-ratio subdomains.

a brief inspection of the distribution of aspect ratios for iteration counts are roughly equal to those for No 5 3,
several of our meshes, we developed the following, quite while the CPU time is lower due to the reduced work
arbitrary, heuristic for determining the amount of overlap in the subdomain solves. Note that variable overlap does
for each domain, k: not provide significant gain (163 s vs 199 s) for the

regularized mesh.
Finally we remark that, in some cases, the overlapping

Schwarz method improves the conditioning to the point
N k

o 5 5
3 if AR $ 10

2 if 10 . AR $ 5

1 otherwise.

. (53) where 32-bit arithmetic suffices where 64-bit arithmetic had
been previously required for convergence of the pressure
solve. One such example is the Re 5 9500 cylinder calcula-
tion of Fig. 1. The number of pressure degrees of freedomThe convergence behavior for K 5 1488 using variable
for this (K 5 6112, N 5 9) problem is 390,000. Figure 9overlap is shown on the right in Fig. 6. It can be seen
(left) shows the first time step convergence behavior forthat convergence rates for the variable overlap case and
the overlapping Schwarz preconditioner with No 5 1 andthe regularized geometry (K 5 1744) do not exhibit the
No varying according to (53). Also shown is the conver-degradation associated with HAR subdomains. The last
gence behavior for the deflation scheme with piecewisecolumn of Table V shows the marked improvement of

variable overlap over minimal overlap (No 5 1). The constant prolongation. On the right is the cumulative num-

FIG. 8. Regularized spectral element mesh (K 5 1744) showing resistant pressure mode for flow past a cylinder.
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FIG. 9. Residual history for the first step (left) and cumulative pressure iteration count for 100 steps (right) for K 5 6112 cylinder calculation
of Fig. 1, restarted from t 5 3.0.

ber of pressure iterations for the first 100 time steps. Note Future research efforts include extending the precondi-
tioner to three dimensions and implementing it on distrib-that the initial time steps are the most costly, as subsequent

solutions are computed from initial guesses based upon uted memory architectures. In addition, the need for more
sophisticated coarse grid spaces which address the aspect-previous solutions [15]. Also recall that the deflation-based

scheme requires two matrix vector products with E for ratio problem should be assessed.
each iteration.

APPENDIX: CHOICE OF FINITE ELEMENT SPACES
5. CONCLUSIONS

In the development of the low-order Laplacian in Sec-
tion 3, the choice of finite element spaces was not arbitrary.We have developed an additive overlapping Schwarz

preconditioner for the computationally challenging pres- Given the locally tensor-product spaces of the spectral
element method, the natural choice for a low-order finitesure operator which arises when an Uzawa decoupling

procedure is applied to the PN 2 PN22 spectral element element preconditioner would be bilinear (trilinear in R3)
finite elements. However, linear elements based upon aformulation of the incompressible Navier–Stokes equa-

tions. The pressure preconditioner is derived from local triangulation of the Gauss or Gauss–Lobatto points yield
a lower condition number in the monodomain case. Thisfinite element Laplacians based upon a triangulation of

the Gauss (pressure) points, coupled with a global coarse is seemingly at odds with the results of Deville and Mund,
who in [10] found the contrary, so a careful study of thisgrid operator based upon a triangulation of the spectral

element vertices. The Schwarz procedure yielded signifi- issue is pertinent.
As a point of reference, we first consider finite elementcantly improved convergence rates over previously em-

ployed deflation/block-Jacobi-based schemes. It was also preconditioning of the spectral element Poisson operator,
A, derived for the monodomain case on the referencefound that the convergence of the Schwarz procedure dete-

riorated significantly in the presence of high-aspect-ratio subdomain, V 5 V̂, with homogeneous Dirichlet boundary
conditions on V. This case was studied in detail by Devillesubdomains. For the case where the number of such subdo-

mains is small, it was found that the problem could be and Mund in [10] for the spectral collocation method.
In addition to the linear spaces based on triangles, weeasily remedied by introducing more overlap for high-

aspect-ratio domains. The overall Navier–Stokes solution will consider as preconditioners the Laplacian based upon
bilinear finite elements, Af , and its lumped mass counter-times for several production runs have been reduced by a

factor of 5 with the development of this preconditioner. part, Al . The easiest way to define these operators is as a
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TABLE VI TABLE VIII

Symmetric Preconditioner for E, Monodomain CaseSymmetric Preconditioner for A, Monodomain Case

A21
f A A21

l A A21
t A E21

f E E21
l E E21

t E

N k lmax lmin k lmax lmin k lmax lmin N k lmax lmin k lmax lmin k lmax lmin

4 7.75 10.46 1.35 2.99 3.49 1.17 2.99 3.49 1.174 3.62 4.63 1.28 1.55 1.84 1.18 1.55 1.84 1.18
6 4.84 5.44 1.12 1.80 1.95 1.08 1.80 1.95 1.08 6 11.23 12.06 1.07 4.08 4.15 1.02 4.08 4.15 1.02

8 13.32 13.76 1.03 5.49 4.74 0.86 5.49 4.74 0.868 5.47 5.86 1.07 1.95 2.04 1.05 1.95 2.04 1.05
10 5.86 6.12 1.05 2.04 2.10 1.03 2.04 2.10 1.03 10 14.83 15.10 1.02 7.06 5.16 0.73 7.06 5.16 0.73

20 23.98 18.30 0.76 15.94 6.14 0.39 15.94 6.14 0.3920 6.64 6.71 1.01 2.24 2.26 1.01 2.24 2.26 1.01
40 7.02 7.04 1.00 2.35 2.35 1.00 2.35 2.35 1.00 40 50.57 20.14 0.40 35.66 6.72 0.19 35.66 6.72 0.19

tensor product of one-dimensional finite element opera- Bij 5 dij E11

21
fj(j)dj, i, j [ h1, ..., N 2 1j2, (56)

tors. Consider the space of piecewise linear functions, fi(j),
j [ [21, 11],

which corresponds to a diagonal matrix with nonzeros
equal to the row sums of B̃.

If the interior grid points on the reference domain are
numbered lexicographically, then the two-dimensional
stiffness and mass matrices for the bilinear finite ele-fi(j) 55

j 2 ji21

ji 2 ji21
, ji21 # j , ji

j 2 ji11

ji 2 ji11
, ji # j , ji11 , i [ h1, ..., N 2 1j,

0, otherwise,

ments are

Af 5 B̃ ^ Ã 1Ã ^ B̃, Bf 5 B̃ ^ B̃, (57)
(54)

respectively. The lumped mass stiffness and mass matrices
where the ji’s are the Gauss–Lobatto points. The bilinear in two dimensions are
forms for the homogeneous Dirichlet problem give rise to
the tridiagonal stiffness and mass matrices,

Al 5 B ^ Ã 1 Ã ^ B, Bl 5 B ^ B. (58)

The stiffness matrix Al is identical to the Laplacian derivedÃij 5 Sdfi

dj
,
dfj

dj
D, B̃ij 5 (fi , fj), i, j [ h1, ..., N 2 1j2,

from linear triangles, At , or the classic five-point finite-
difference stencil. However, whereas the lumped mass ma-(55)
trix, Bl , is diagonal, the linear finite element mass matrix,
Bt, has six nonzeros per row for a regular array of triangles.

where (.,.) is the one-dimensional counterpart of (6). In Since both Af and Bf result from Kronecker products of
addition, we define the lumped mass matrix for the one tridiagonal matrices, they yield a full nine-point stencil.
dimensional case, Table VI shows the condition number and extreme ei-

genvalues for the preconditioned system A21
p A. The values

of k(A21
t A) and k(A21

l A) appear to be approaching the
TABLE VII bound f2/4 which has been found by several authors [10,

35]. Note that preconditioners having a ‘‘star’’ type ofNonsymmetric Preconditioner for A, Monodomain Case
stencil yield a lower condition number than the seemingly

A21
f BfB21A A21

l BlB21A A21
t BtB21A natural choice of bilinear finite elements. It was noted

earlier that, for undeformed geometries, the spectral
N k lmax lmin k lmax lmin k lmax lmin Laplacian also has a star-shaped stencil due to the diagonal

mass matrix, and this appears to be the reason for the4 1.46 0.92 0.63 1.55 1.55 1.00 2.18 0.90 0.41
6 1.41 0.96 0.68 1.80 1.80 1.00 2.49 0.96 0.39 superior conditioning by the linear and lumped mass oper-
8 1.35 0.98 0.72 1.95 1.95 1.00 2.63 0.98 0.37 ators in this symmetric case.

10 1.36 0.99 0.72 2.04 2.04 1.00 2.69 0.99 0.37 By contrast, if one preconditions the original differential
20 1.37 1.00 0.73 2.24 2.24 1.00 2.73 1.00 0.37

operator (42) by taking into account the mass matrices as40 1.40 1.00 0.71 2.35 2.34 1.00 2.79 1.00 0.36
done by Deville and Mund [10], then bilinear finite
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TABLE IX

Nonsymmetric Preconditioner for E, Monodomain Case

E21
f BfB21E E21

l BlB21E E21
t BtB21E

N k lmax lmin k lmax lmin k lmax lmin

4 1.84 0.17 0.094 3.93 0.56 0.142 3.68 0.81 0.219
6 3.81 0.30 0.079 5.82 0.91 0.156 6.54 1.22 0.187
8 5.33 0.36 0.068 7.78 1.11 0.143 9.21 1.48 0.161

10 6.91 0.40 0.058 9.81 1.24 0.126 11.91 1.65 0.139
20 15.78 0.50 0.032 21.25 1.52 0.072 25.90 2.03 0.078
40 35.47 0.55 0.016 46.78 1.68 0.036 56.05 2.24 0.040

elements are superior to linear finite elements. Table numbers for the generalized eigenvalue problem were
computed by premultiplying E by the pseudoinverse of theVII shows the extreme real part of the eigenvalues for

A21
p BpB21A and associated ‘‘condition number,’’ k 5 max preconditioner and then solving the standard eigenvalue

problem.Re(l)/min Re(l). (We note that the spectrum of several
of the operators was complex. However, the maximum Tables VIII and IX show the condition numbers for the

E operator, analogous to the previous two tables for A.imaginary magnitude was less than 10% of the minimum
real part of the spectrum.) In this case, the asymptotic In this case, the condition numbers are not bounded. How-

ever, from the results of Table III of Section 3, it is clearvalue of k 5 1.4 for the bilinear element is significantly
lower than that found for the symmetric preconditioners, that finite element preconditioning is effective and appar-

ently only weakly dependent upon N in the multidomainas noted in [10], and suggests that nonsymmetric iteration
schemes such as GMRES might be of interest in conjunc- case. We have also verified that the growth with N is not

due to the boundary conditions, by repeating the experi-tion with this preconditioner.
We now consider the same eigenvalue test for the consis- ments for A21

p A using Neumann boundary conditions in-
stead of Dirichlet; the results were largely unchanged fromtent Poisson operator, E, generated with homogeneous

Dirichlet boundary conditions for the velocity. In this case, those in Tables VI and VII. The key information to draw
from Tables VIII and IX is that linear triangles are superiorthe finite element preconditioners are Neumann operators

(null space of dimension unity) corresponding to a triangu- to bilinear elements in the case of the symmetric precondi-
tioner and that, for E, the symmetric linear preconditionerlation of the Gauss points (hi , hj). Note that the triangula-

tion does not extend to V. The basis for the bilinear finite seems to be as good as the nonsymmetric bilinear precondi-
toner.elements is again a tensor product of one-dimensional func-

tions, We have also investigated the case of deformed elements
and found the results for both A and E largely unchanged.
As a result of this study we have based our preconditioner
upon linear finite elements, which also eases the coding
for deformed geometries. Note that Et is identical to the

ci(h) 5 5
h 2 hi21

hi 2 hi21
, hi21 # h , hi

h 2 hi11

hi 2 hi11
, hi # h , hi11 , i [ h1, ..., N 2 1j,

0, otherwise,

preconditoner Ag of Sections 3 and 4.
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